(6x-1)/x-(1/x^2)=5

Simple and best practice solution for (6x-1)/x-(1/x^2)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x-1)/x-(1/x^2)=5 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

(6*x-1)/x-(1/(x^2)) = 5 // - 5

(6*x-1)/x-(1/(x^2))-5 = 0

(6*x-1)/x-x^-2-5 = 0

(6*x-1)/x-1/(x^2)-5 = 0

(x^2*(6*x-1))/(x*x^2)+(-1*x)/(x*x^2)+(-5*x*x^2)/(x*x^2) = 0

x^2*(6*x-1)-5*x*x^2-1*x = 0

6*x^3-5*x^3-x^2-x = 0

x^3-x^2-x = 0

x^3-x^2-x = 0

x*(x^2-x-1) = 0

x^2-x-1 = 0

DELTA = (-1)^2-(-1*1*4)

DELTA = 5

DELTA > 0

x = (5^(1/2)+1)/(1*2) or x = (1-5^(1/2))/(1*2)

x = (5^(1/2)+1)/2 or x = (1-5^(1/2))/2

x*(x-((1-5^(1/2))/2))*(x-((5^(1/2)+1)/2)) = 0

(x*(x-((1-5^(1/2))/2))*(x-((5^(1/2)+1)/2)))/(x*x^2) = 0

(x*(x-((1-5^(1/2))/2))*(x-((5^(1/2)+1)/2)))/(x*x^2) = 0 // * x*x^2

x*(x-((1-5^(1/2))/2))*(x-((5^(1/2)+1)/2)) = 0

( x-((1-5^(1/2))/2) )

x-((1-5^(1/2))/2) = 0 // + (1-5^(1/2))/2

x = (1-5^(1/2))/2

( x-((5^(1/2)+1)/2) )

x-((5^(1/2)+1)/2) = 0 // + (5^(1/2)+1)/2

x = (5^(1/2)+1)/2

( x )

x = 0

x in { 0}

x in { (1-5^(1/2))/2, (5^(1/2)+1)/2 }

See similar equations:

| c=(-13)(-13) | | 3x-16=2x+10 | | (5y^2-7y)+(3y-y^2)= | | 5x-3=4x+4 | | 5n^2+42n+49=0 | | 5x-3=4x-4 | | -4v+1/5=-7/3v-7/5 | | 3n^2-30n+72=0 | | 12x-4(3x)=7 | | 3x^2+17x-8=-2 | | 7x-11=-18+3x | | 6m+(-12)=60 | | 0.3(x+9)+5=67 | | 0.3(x+9)+=67 | | 45=10+x*5/2 | | -3x+3=-24 | | 2x+10y=-16 | | 18z^7-15z^4/3z^3 | | 9+5x=-36 | | -4x-10=-14 | | -10+4x=10 | | (4x)(x+5)=0 | | 1x^2-x-1=0 | | 8x-6=25 | | 4x-22=4x-22 | | y=-7(-13) | | 5.5+r^2=36+r^2 | | 6t=3(n+4)-t | | 3-4x=-3-x^2+4x | | 1/2(5x+2)=4 | | 3y=-12+15x | | 4h-8=3h+21 |

Equations solver categories